题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: 9e558a7dc)

[复制链接]
admin 发表于 2024-2-27 21:48:31 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
Jeremy is making an open-top rectangular box as part of u;hir hzppr80)rc;c1mx,+a ya science project. Hoggbd9q) gw 0)uj;ru6 qr,xp8e makes the box from a rectangular piece of cardboard, 30 cm x 18 cm. To construct the box, Jeremy cuts off squares of side length x c bj ru,8;6wq9gx r)qd)ug0pgom from each corner, as shown in the following diagram.

After removing the squares, Jeremy folds up the edges to form the box as shown.

1. Write down, in terms of x , expressions for the length and width of the box.
l=a-bx ;a=  ,b=  .
w=c-dx; c=  ,d=  .
2. 1. State whether x can have a value of 10 . Give a reason for your answer.
2. Write down the interval for the possible values of x .
3. Show that the volume, $V \mathrm{~cm}^{3}$ , of the box is given by

$V=4 x^{3}-96 x^{2}+540 x$ .

4. Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$=ax^2-bx+c;a=  ,b=  ,c=   .
5. Using your answer from part (d), find the value of x that maximizes the volume of the box.
x≈  cm.
6. Calculate the maximum volume of the box.V≈  $cm^3$.
7. Sketch the graph of V , for the possible values of x found in part (b)(ii), and $0 \leq V \leq 1000$ . Label the maximum point.




参考答案:
空格1: 30空格2: 2空格3: 18空格4: 2空格5: 12空格6: 192空格7: 540空格8: 3.64±3%空格9: 887±3


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版首页|使用帮助|题库网 (https://tiku.one)

GMT+8, 2025-11-23 16:37 , Processed in 0.064336 second(s), 29 queries , Redis On.

搜索
快速回复 返回顶部 返回列表