题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Statistics & Probability Topic 4.2 Bivariate Statistics (id: 8d3498f1e

[复制链接]
admin 发表于 2024-4-4 18:12:18 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Statistics & Probability Topic 4.2 Bivariate Statistics,类别为 IB数学

[填空题]
John operates a small clothing : (kjdkqjd8w(cj2b q9y3 ,cy/ k8q bnwfactory that manufactures jeans. John observes tyzg(i(4p4 ghzhatz y(g4pzg(hi 4 the weekly total production cost, C , in Australian dollars (AUD), and the number of jeans produced per week, N , can be related by the equation

$C=a N^{b}+K$,

where a, b and K are positive constants.
John estimates that the weekly total fixed cost of operating the factory is 7500 AUD.
1. Write down the value of K .

After analysing the financial accounting records of a particular month, John finds the data given below.   

2. Draw a scatter diagram of $\ln (C-K)$ versus $\ln N$ , scaling and shifting the axes if needed.
3. State the type of model that best fits the data displayed on your scatter diagram from part (b).
4. Write down the equation of the regression line of $\ln (C-K) $ on $\ln N$ .
5. Hence find the value of a and the value of b .

John wants to increase the production rate of jeans up to 1000 pairs per week. a =    b =   
6. Using John's equation, estimate the weekly total cost of producing 1000 jeans. ≈    AUD
7. State whether it is valid to use John's equation to estimate the weekly total cost of producing 1000 jeans. Give a reason for your answer.
8. 1. Describe how the data must be entered into your G.D.C. to determine John's equation using power regression method.
2. Hence verify your answers to part (e). a =    b =   




参考答案:
空格1: 7500空格2: 171空格3: 0.806空格4: 52300±2%空格5: 177空格6: 0.8


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-21 19:42 , Processed in 0.051482 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表