题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

 Exponents & Logs (id: c1d7b99c6)

[复制链接]
admin 发表于 2024-5-31 15:23:48 | 显示全部楼层 |阅读模式
本题目来源于试卷:  Exponents & Logs,类别为 IB数学

[填空题]
The first two terms of an mt wm mrn. t+*1vo68bsinfinite geometric sevx 2 j)62gae,n9g zozvquence, in order, are

$3 \log _{3} x, 2 \log _{3} x, \text { where } x>0 \text {. }$

1. Find the common ratio, r .   
2. Show that the sum of the infinite sequence is $9 \log _{3}$ x .$a \log _{b} x$ a =    b =   

The first three terms of an arithmetic sequence, in order, are

$\log _{3} x, \log _{3} \frac{x}{3}, \log _{3} \frac{x}{9}, \text { where } x>0 \text {. }$

3. Find the common difference d , giving your answer as an integer.

Let $S_{6}$ be the sum of the first 6 terms of the arithmetic sequence.   
4. Show that $S_{6}=6$ $\log _{3} x-15$ .$a \log _{b} x-c$ a =    b =    c =   
5. Given that $S_{6}$ is equal to one third of the sum of the infinite geometric sequence, find x , giving your answer in the form $a^{p}$ where a, $p \in \mathbb{Z}$ .$a^b$a =    b =   




参考答案:
空格1: 2/3空格2: 9空格3: 3空格4: -1空格5: 6空格6: 3空格7: 15空格8: 3空格9: 5


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:10 , Processed in 0.050624 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表