题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Sequences & Series (id: 6b404e387)

[复制链接]
admin 发表于 2024-6-2 21:47:39 | 显示全部楼层 |阅读模式
本题目来源于试卷: Sequences & Series,类别为 IB数学

[问答题]
The first two terms of an iomltnk 4-8.tu igi ,j2 yztpatj j-/6(nfi9 r 2gydef;wgaow)ky 7f 24nr0nite geometric sequence, in order, are

$3 \log _{3} x, 2 \log _{3} x, \text { where } x>0 \text {. }$

1. Find the common ratio, r .
2. Show that the sum of the infinite sequence is $9 \log _{3} x$ .

The first three terms of an arithmetic sequence, in order, are

$\log _{3} x, \log _{3} \frac{x}{3}, \log _{3} \frac{x}{9}, \text { where } x>0$ .

3. Find the common difference d , giving your answer as an integer.

Let S_{6} be the sum of the first 6 terms of the arithmetic sequence. __
4. Show that $S_{6}=6 \log _{3} x-15$
5. Given that $S_{6}$ is equal to one third of the sum of the infinite geometric sequence, find x , giving your answer in the form $a^{p}$ where a, $p \in \mathbb{Z}$ .




参考答案:



本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:17 , Processed in 0.052692 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表