题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Sequences & Series (id: 9d35c7bac)

[复制链接]
admin 发表于 2024-6-2 21:57:11 | 显示全部楼层 |阅读模式
本题目来源于试卷: Sequences & Series,类别为 IB数学

[问答题]
This question asks you to investh *wkbagpm t);f ;kja1wp);h(igate stl*6uzww8-j 6yew jf :ome properties of hexagonal numbers.
Hexagonal numbers can be represented by dots as shown below where $h_{n}$ denotes the n th hexagonal number, $n \in \mathbb{N}$ .


Note that 6 points are required to create the regular hexagon $h_{2}$ with side of length 1 , while 15 points are required to create the next hexagon $h_{3}$ with side of length 2 , and so on.
1. Write down the value of $h_{5}$ .
2. By examining the pattern, show that $ h_{n+1}=h_{n}+4 n+1, n \in \mathbb{N} $.
3. By expressing $h_{n}$ as a series, show that $h_{n}=2 n^{2}-n, n \in \mathbb{N}$ .
4. Hence, determine whether 2016 is a hexagonal number.
5. Find the least hexagonal number which is greater than 80000 .
6. Consider the statement:
45 is the only hexagonal number which is divisible by 9 .
Show that this statement is false.

Matt claims that given $h_{1}=1 $ and $h_{n+1}=h_{n}+4 n+1, n \in \mathbb{N}$ , then

$h_{n}=2 n^{2}-n, \quad n \in \mathbb{N}$

7. Show, by mathematical induction, that Matt's claim is true for all $ n \in \mathbb{N}$ .




参考答案:



本题详细解析:



微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:42 , Processed in 0.056255 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表