题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Sequences & Series (id: 9ace4ea60)

[复制链接]
admin 发表于 2024-6-2 22:00:28 | 显示全部楼层 |阅读模式
本题目来源于试卷: Sequences & Series,类别为 IB数学

[问答题]
The cubic polynomial,gqu 9qsbo m(. equatiou75qdas7v fyo/z5+e i n $x^{3}+b x^{2}+c x+d=0$ has three roots $x_{1}$, $x_{2}$ and $x_{3}$ . By expanding the product $\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) $, show that
1. 1. $ b=-\left(x_{1}+x_{2}+x_{3}\right)$ ;
2. $c=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$ ;
3. $d=-x_{1} x_{2} x_{3}$ .

It is given that b=-9 and c=45 for parts (b) and (c) below.
2. 1. In the case that the three roots $x_{1}$, $x_{2}$ and $x_{3}$ form an arithmetic sequence, show that one of the roots is 3 .
2. Hence determine the value of d .
3. In another case the three roots form a geometric sequence. Determine the value of d .




参考答案:



本题详细解析:




微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:28 , Processed in 0.059240 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表