题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Counting Principles  (id: 4ab75b931)

[复制链接]
admin 发表于 2024-6-2 22:21:27 | 显示全部楼层 |阅读模式
本题目来源于试卷: Counting Principles ,类别为 IB数学

[填空题]
Sophie and Ella play a game. They each have five car0vot/m:f c/8dzh:qt pds showing roman numerals I,dzp 0o cv/m:tf8t/ qh:79ghtcg4z 4dk g;pc,q3cx g 4a V, X, L, C. Sophie lays her cards face up on the table in order I, V, X, L, C as shown in the follc;p4g 3qcc7gak d9h t 4gz,g4xowing diagram.


Ella shuffles her cards and lays them face down on the table. She then turns them over one by one to see if her card matches with Sophie's 4 card directly above. Sophie wins if no matches occur; otherwise Ella wins.
1. Show that the probability that Sophie wins the game is $\frac{11}{30}$ .

Sophie and Ella repeat their game so that they play a total of 90 times. Let the discrete random variable X represent the number of times Sophie wins.   
2. Determine:
1. the mean of X ;   
2. the variance of X .   




参考答案:
空格1: 11/30±2%空格2: 33±2%空格3: 20.9±2%


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2025-2-4 12:55 , Processed in 0.062098 second(s), 29 queries , Redis On.

搜索
快速回复 返回顶部 返回列表