[填空题]
Consider the complex numbex *yqducx6l yu2(4d4sfx x+y(r ;0auo 3gof (ka$z=\frac{w_{1}}{w_{2}}$ where $w_{1}=\sqrt{2}+\sqrt{6} \mathrm{i}$ and $w_{2}=3+\sqrt{3} \mathrm{i}$ .
1. Express $w_{1}$ and $w_{2}$ in modulus-argument form and write down
1. the modulus of z ;$\frac{\sqrt{a}}{b}$ a = b =
2. the argument of z .$\frac{\pi}{a}$ a =
2. Find the smallest positive integer value of n such that $z^{n}$ is a real number. n =