题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Complex Numbers (id: aa3bffa41)

[复制链接]
admin 发表于 2024-6-4 14:54:30 | 显示全部楼层 |阅读模式
本题目来源于试卷: Complex Numbers,类别为 IB数学

[问答题]
1. Express $-4+4 \sqrt{3} \mathrm{i}$ in the form r $e^{\mathrm{i} \theta}$ , where r>0 and $-\pi<\theta \leq \pi$ .

Let the roots of the equation $z^{3}=-4+4 \sqrt{3} \mathrm{i}$ be $z_{1}$, $z_{2}$ and $z_{3}$ .
2. Find $z_{1}$, $z_{2}$ and $ z_{3}$ expressing your answers in the form $ r e^{\mathrm{i} \theta}$ , where r>0 and $-\pi<\theta \leq \pi$ .

On an Argand diagram, $z_{1}$, $z_{2}$ and $z_{3}$ are represented by the points $\mathrm{A}$, $\mathrm{B}$ and $\mathrm{C}$ , respectively.
3. Find the area of the triangle $\mathrm{ABC}$ .
4. By considering the sum of the roots $z_{1}, z_{2}$ and $z_{3}$ , show that

$\cos \left(\frac{2 \pi}{9}\right)+\cos \left(\frac{4 \pi}{9}\right)+\cos \left(\frac{8 \pi}{9}\right)=0$




参考答案:



本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 02:52 , Processed in 0.057793 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表