题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Complex Numbers (id: b75e60aba)

[复制链接]
admin 发表于 2024-6-4 15:02:16 | 显示全部楼层 |阅读模式
本题目来源于试卷: Complex Numbers,类别为 IB数学

[问答题]
1. 1. Expand $(\cos \theta+\mathrm{i} \sin \theta)^{4}$ by using the binomial theorem.
2. Hence use de Moivre's theorem to prove that

$\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta$

3. State a similar expression for $\sin 4 \theta $ in terms of $\cos \theta $and $ \sin \theta$ .

Let $ z=r(\cos \alpha+\mathrm{i} \sin \alpha)$ , where $\alpha$ is measured in degrees, be the solution of $z^{4}-\mathrm{i}=0$ which has the smallest positive argument.
2. Find the modulus and argument of z .
3. Use (a) (ii) and your answer from (b) to show that $8 \cos ^{4} \alpha-8 \cos ^{2} \alpha+1=0$ .
4. Hence express $\cos 22.5^{\circ}$ in the form $\frac{\sqrt{a+b \sqrt{c}}}{d}$ where a, b, c, d $\in \mathbb{Z}$ .




参考答案:



本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:23 , Processed in 0.062672 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表