题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Proofs  Proofs  (id: bc229eb85)

[复制链接]
admin 发表于 2024-6-4 15:39:21 | 显示全部楼层 |阅读模式
本题目来源于试卷: Proofs  Proofs ,类别为 IB数学

[问答题]
The following diagram sm .nf0)u0qs 21xk h lakb2hi*vhows the.ajn,2-v3mq(z kgnwbzs;gx 88mj( 3-ctftmv graph of $y=\arctan (2 x-3)+\frac{3 \pi}{4} for x \in \mathbb{R}$ , with asymptotes at $y=\frac{\pi}{4} and y=\frac{5 \pi}{4}$ .



1. Describe a sequence of transformations that transforms the graph of $y=\arctan x$ to the graph of $y=\arctan (2 x-3)+\frac{3 \pi}{4}$ for $ \in \mathbb{R} $.
2. Show that $\arctan p-\arctan q \equiv \arctan \left(\frac{p-q}{1+p q}\right)$.
3. Verify that $\arctan (x+2)-\arctan (x+1)=\arctan \left(\frac{1}{(x+1)^{2}+(x+1)+1}\right)$ .
4. Using mathematical induction and the results from part (b) and (c), prove that

$\sum_{r=1}^{n} \arctan \left(\frac{1}{r^{2}+r+1}\right)=\arctan (n+1)-\frac{\pi}{4} \quad $ for $n \in \mathbb{Z}^{+}$




参考答案:




本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-21 22:29 , Processed in 0.058797 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表