题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Proofs  Proofs  (id: 3fd89b706)

[复制链接]
admin 发表于 2024-6-4 15:41:54 | 显示全部楼层 |阅读模式
本题目来源于试卷: Proofs  Proofs ,类别为 IB数学

[问答题]
1. Use de Moivre's theorem twn d w) gp2g.a16lu9qrbrpa;),tibxb8.1jp oo find the value of $ \left[\cos \left(\frac{\pi}{6}\right)+\mathrm{i} \sin \left(\frac{\pi}{6}\right)\right]^{12}$ .
2. Use mathematical induction to prove that

$(\cos \alpha-\mathrm{i} \sin \alpha)^{n}=\cos (n \alpha)-\mathrm{i} \sin (n \alpha) \quad $for all $ n \in \mathbb{Z}^{+} $.


Let $w=\cos \alpha+\mathrm{i} \sin \alpha$ .
3. Find an expression in terms of $\alpha$ for $ w^{n}-\left(w^{*}\right)^{n}$, $n \in \mathbb{Z}^{+}$ , where $ w^{*}$ is the complex conjugate of w .
4. 1. Show that $w w^{*}=1$ .
2. Write down and simplify the binomial expansion of $ \left(w-w^{*}\right)^{3}$ in terms of w and $w^{*}$ .
3. Hence show that $ \sin (3 \alpha)=3 \sin \alpha-4 \sin ^{3} \alpha$ .
5. Hence solve $4 \sin ^{3} \alpha+(2 \cos \alpha-3) \sin \alpha=0$ for $0 \leq \alpha \leq \pi$ .




参考答案:



本题详细解析:


微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-21 22:31 , Processed in 0.058210 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表