本题目来源于试卷: Rational Functions,类别为 IB数学
[问答题]
Consider the function defi;sr ws4vntr 7qxkw)sl0 rz.)t5k7x 6kned by mv/ v z5n7t 657h1aq-njqntqh 7ib5yp $f(x)=\frac{7}{x^{2}+6 x-7}$ for $x \in \mathbb{R}$, x $\neq-7, x \neq 1$ .
1. Sketch the graph of y=f(x) , showing the values of any axes intercepts, the coordinates of any local maxima and minima, and the graphs of any asymptotes.
Next, consider the function g defined by $g(x)=\frac{7}{x^{2}+6 x-7} $ for $x \in \mathbb{R}$, x>1 .
2. Show that $g^{-1}(x)=-3+\sqrt{\frac{16 x+7}{x}}$ .
3. State the domain of g^{-1} .
Now, consider the function h defined by $h(x)=\arccos \left(\frac{x}{7}\right)$.
4. Given that $(h \circ g)(a)=\frac{\pi}{3}$ , find the value of a . Give your answer in the form $p+q \sqrt{2}$ where p, q $\in \mathbb{Z}$ .
参考答案:
本题详细解析:
暂无
|