题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Exponent-Log Functions (id: 5a8d23e9e)

[复制链接]
admin 发表于 2024-6-14 17:30:15 | 显示全部楼层 |阅读模式
本题目来源于试卷: Exponent-Log Functions,类别为 IB数学

[填空题]
Atmospheric pressure y*dumgfj.d:3 , bh/ :v qrc(-rm*p :wvd P , in kPa, decreases exponentially with increasing height above sea l -b:v/(*pmrh q wdvc:revel, h . The atmospheric pressure can be modelled by the function

P(h)=101 $\times\left(\frac{25}{22}\right)^{-h}$,

where h is the height above sea level in kilometres.
1. Write down the exact atmospheric pressure at sea level, in $\mathrm{kPa}$ .

Mount Kosciuszko is the highest mountain in Australia with a height of 2228 metres above sea level at the top.    kPa
2. Calculate the atmospheric pressure at the top of the Mount Kosciuszko.≈   
3. Calculate the height where the atmospheric pressure is equal to 10 $\mathrm{kPa}$ .   




参考答案:
空格1: 101空格2: 76±2%空格3: 18.1±2%


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-23 15:54 , Processed in 0.060846 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表