本题目来源于试卷: Exponent-Log Functions,类别为 IB数学
[问答题]
Consider the functionb33yco rb h4kd/k(,v1mwg z *m y e.:tk g:i1ma $f(x)=\frac{e^{x}-e^{-x}}{2}$,$x \in \mathbb{R} $.
1. Show that f is an odd function.
Now, consider the function g given by $g(x)=\frac{x^{4}+2}{2 x}$, x $\in \mathbb{R}, x \neq 0$ .
2. By considering the graph of $ y=f(x)-g(x)$, solve $f(x)>g(x)$ for x$ \in \mathbb{R} $.
参考答案:
本题详细解析:
暂无
|