题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Transformations (id: b28e4713d)

[复制链接]
admin 发表于 2024-6-15 14:59:23 | 显示全部楼层 |阅读模式
本题目来源于试卷: Transformations,类别为 IB数学

[问答题]
Consider the function3c 5z4q*b)k/gyjd;(se pp qpq a j;0nmj 5g2yp$g(x)=a x^{3}+b x^{2}+c x+d$ , where $ x \in \mathbb{R}$ and a, b, c, d $\in \mathbb{R}$ .
1. 1. Write down an expression for $g^{\prime}(x)$ .
2. Hence, given that $ g^{-1}$ does not exist, show that $b^{2}-3$ a c>0 .

Consider the function $f(x)=\frac{x^{3}}{2}+3 x^{2}+6 x+\frac{9}{2}$
2. 1. Show that $f^{-1}$ exists.
2. f(x) can be written in the form $p(x+2)^{3}+q $, where p,$ q \in \mathbb{R}$ . Find the value of p and the value of q .
3. Hence, find $f^{-1}(x) $.

The graph of f(x) may be obtained by transforming the graph of y=x^{3} using a sequence of three transformations.
3. State each of the transformations in the order in which they are applied.
4. Sketch the graphs of y=f(x) and y=f^{-1}(x) on the same set of axes, indicating the points where each graph crosses the coordinate axes.




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-21 18:58 , Processed in 0.058772 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表