题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Geometry & Shapes (id: f82d9f297)

[复制链接]
admin 发表于 2024-7-9 17:56:25 | 显示全部楼层 |阅读模式
本题目来源于试卷: Geometry & Shapes,类别为 IB数学

[问答题]
In a triangle $\mathrm{ABC}, \mathrm{BA} \mathrm{A} C=60^{\circ}, \mathrm{AB}=(1-x) \mathrm{cm}$, $\mathrm{AC}=(x+3)^{2} \mathrm{~cm}$,$-3\lt x\lt1$
1. Show that the area, A $\mathrm{~cm}^{2}$ , of the triangle is given by

A=$\frac{\sqrt{3}}{4}\left(9-3 x-5 x^{2}-x^{3}\right)$ .

2. 2a Calculate $ \frac{\mathrm{d} A}{\mathrm{~d} x} $.
2b Verify that $\frac{\mathrm{d} A}{\mathrm{~d} x}=0 $ when $x=-\frac{1}{3}$ .
3. 3a Find $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}} $ and hence verify that $x=-\frac{1}{3}$ gives the maximum area of triangle A B C .
3b Calculate the maximum area of triangle A B C .
3c Find the length of [B C] when the area of triangle A B C is a maximum.



[/B C]




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-23 18:05 , Processed in 0.053825 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表