| 
        本题目来源于试卷:  Geometry & Shapes ,类别为 IB数学 
[问答题]In a triangle $ \mathrm{XYZ}, \mathrm{XY}=9 \mathrm{~cm}, \mathrm{YZ}=x \mathrm{~cm}, \mathrm{XZ}=y \mathrm{~cm} $ and  $\mathrm{XY} \mathrm{Y}=45^{\circ}$ .
 1. Using the cosine rule, show that  $x^{2}-9 \sqrt{2} x+81-y^{2}=0$.
 
 Consider the possible triangles with  $\mathrm{XZ}=7 \mathrm{~cm}$ .
 2. Calculate the two corresponding values of  Y Z .
 3. Hence find the area of the smaller triangle.
 
 Consider the case where  y , the length of  [X Z] , is not fixed at $ 7 \mathrm{~cm}$.
 4. Find the range of values of  y  for which it is possible to form two triangles.
 
 
 |