本题目来源于试卷: Trigonometric Functions,类别为 IB数学
[问答题]
Let $g(x)=-4 x-\frac{\pi}{3}$ and h(x)=$5 \cos x-1$ , for $x \in \mathbb{R}$ .
1. Show that $(h \circ g)(x)=5 \cos \left(-4 x-\frac{\pi}{3}\right)-1$ .
2. Find the range of $h \circ g$ .
3. Given that $(h \circ g)\left(\frac{5 \pi}{12}\right)=4$ , find the next value of x , greater than $\frac{5 \pi}{12} $, for which $(h \circ g)(x)=4$.
4. The graph of $y=(h \circ g)(x) $ can be obtained by applying five transformations to the graph of $ y=\cos x$. State what the five transformations represent geometrically and give the order in which they are applied.
参考答案:
本题详细解析:
暂无
|