本题目来源于试卷: Trigonometric Functions,类别为 IB数学
[问答题]
A function f(x) is desgpb.5amv1, r n)5 hs +xwslc1jv0 w4dfined by $f(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right)$, $x \in \mathbb{R}$
1. Show that f is an even function.
2. Find the equation of the horizontal asymptote to the graph of y=f(x) .
3. 1. Show that $f^{\prime}(x)=-\frac{2 x}{\sqrt{x^{2}}\left(x^{2}+1\right)}$ for $x \in \mathbb{R}$,$ x \neq 0 $.
2. Using the expression for $f^{\prime}(x)$ and the result $ \sqrt{x^{2}}=|x|$ , show that f is increasing for x<0 .
A function g is defined by $g(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right)$, $x \in \mathbb{R}$, $x \geq 0$ .
4. Find the range of g .
5. Find an expression for $g^{-1}(x)$ .
6. State the domain of $g^{-1}(x)$ .
7. Sketch the graph of $y=g^{-1}(x)$ . Clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.
参考答案:
本题详细解析:
暂无
|