题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Trigonometric Functions (id: 5f3aa0e28)

[复制链接]
admin 发表于 2024-7-13 00:24:45 | 显示全部楼层 |阅读模式
本题目来源于试卷: Trigonometric Functions,类别为 IB数学

[问答题]
The following diagram sho0p+goaii *spgvi 5:(sws the graz;ss 6 6w43e k0 :*n6wnodebhlmyme,zph of $y=\arctan (2 x-3)+\frac{3 \pi}{4}$ for $ x \in \mathbb{R}$ , with asymptotes at $ y=\frac{\pi}{4} $ and $y=\frac{5 \pi}{4}$ .



1. Describe a sequence of transformations that transforms the graph of $ y=\arctan x$ to the graph of $y=\arctan (2 x-3)+\frac{3 \pi}{4}$ for $ x \in \mathbb{R}$ .
2. Show that $\arctan p-\arctan q \equiv \arctan \left(\frac{p-q}{1+p q}\right)$ .
3. Verify that $\arctan (x+2)-\arctan (x+1)=\arctan \left(\frac{1}{(x+1)^{2}+(x+1)+1}\right) $.
4. Using mathematical induction and the results from part (b) and (c), prove that

$\sum_{r=1}^{n} \arctan \left(\frac{1}{r^{2}+r+1}\right)=\arctan (n+1)-\frac{\pi}{4} \quad \text { for } n \in \mathbb{Z}^{+}$




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-21 21:45 , Processed in 0.059454 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表