题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

VectorsVectors (id: 83d7f0324)

[复制链接]
admin 发表于 2024-7-17 14:37:32 | 显示全部楼层 |阅读模式
本题目来源于试卷: VectorsVectors,类别为 IB数学

[问答题]
Two lines L_{1} and L_{2} are rebmchp/ kl5nj8:* ;tyr p,fl 9 ooq1*sp2eha3qubn n8 x3resented by the vector equations:

$\begin{aligned}
L_{1}: & \mathbf{r}_{1}=\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)+t\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), t \in \mathbb{R} \\
L_{2}: & \mathbf{r}_{2}=\left(\begin{array}{c}
-1 \\
-3 \\
11
\end{array}\right)+s\left(\begin{array}{l}
1 \\
2 \\
k
\end{array}\right), s \in \mathbb{R}
\end{aligned}$


The lines $L_{1} $ and $ L_{2}$ are perpendicular to each other.
1. Show that k=-1 .

The lines L_{1} and L_{2} intersect at the point A .
2. Find $\overrightarrow{\mathrm{OA}}$ .

Let $ \overrightarrow{\mathrm{OB}}=\left(\begin{array}{l}2 \\ 2 \\ 7\end{array}\right)$ and $\overrightarrow{\mathrm{BC}}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
3. 1. Find $\overrightarrow{\mathrm{BA}}$.
2. Hence find the angle CBA.




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:19 , Processed in 0.052499 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表