本题目来源于试卷: VectorsVectors,类别为 IB数学
[问答题]
Consider two vectors9lo( f v51xf*yjw2x51agjs64dcu sb s4 hmcdm 3j7gd8lo h,0l $\mathbf{u}$ and \mathbf{v} such that $\mathbf{u}=\binom{-6}{8} $ and $|\mathbf{v}|=20$ .
1. Find the possible range of values for $|\mathbf{u}+\mathbf{v}|$.
2. Given that $\mathbf{v}=k \mathbf{u} $ for some $k \in \mathbb{R}$ , find $\mathbf{v}$ when $|\mathbf{u}+\mathbf{v}| $ is a minimum.
3. Find the vector $\mathbf{w}=\binom{a}{b}$ such that a, b $\in \mathbb{R}^{+},|\mathbf{w}|=|\mathbf{v}|$ and $\mathbf{w}$ is perpendicular to $ \mathbf{u}$ .
参考答案:
本题详细解析:
暂无
|