本题目来源于试卷: VectorsVectors,类别为 IB数学
[问答题]
Two lines have vector equatio d --b3gaqz4xtx;6 k/aph8ku lns gijy+rmqx)pf uw .t,7g6ven by
$L_{1}: \mathbf{r}_{1}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)+t\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), t \in \mathbb{R} . L_{2}: \mathbf{r}_{2}=\left(\begin{array}{c}
4 \\
-1 \\
0
\end{array}\right)+s\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right), s \in \mathbb{R} $.
Point A is the point on $L_{1}$ that is closest to the origin.
1. Find the coordinates of A .
2. Find the shortest distance between $L_{1}$ and $ L_{2}$ .
参考答案:
本题详细解析:
暂无
|