题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

VectorsVectors (id: 9214f5896)

[复制链接]
admin 发表于 2024-7-17 19:32:04 | 显示全部楼层 |阅读模式
本题目来源于试卷: VectorsVectors,类别为 IB数学

[问答题]
Two planes have equationnys95s8yp 5pu su4nyd 3 u20itu

$\Pi_{1}$: 2 x+4 y+z=9 $\text { and } \Pi_{2}$: 2 x+y-z=1 .

1. Find the cosine of the angle between the two planes, giving your answer in the form $\frac{\sqrt{p}}{q}$ where p, q $\in \mathbb{Z}^{+}$ .

Let L be the line of intersection of the two planes.
2. 1. Show that L has direction $5 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k}$ .
2. Show that the point P(0,2,1) lies on both planes.
3. Write down the vector equation of L .

Q is the point on $\Pi_{1} $ with coordinates (a, 1, b) .
3. Given that the vector $\overrightarrow{\mathrm{PQ}} $ is perpendicular to L , find the value of a and the value of b .
4. Show that $\mathrm{PQ}=\sqrt{33}$ .

The point R lies on L and $\mathrm{PQ} \mathrm{Q}=30^{\circ} $.
5. Find the coordinates of the two possible positions of R.




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:06 , Processed in 0.058794 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表