题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

VectorsVectors (id: b3c9671f5)

[复制链接]
admin 发表于 2024-7-17 19:35:15 | 显示全部楼层 |阅读模式
本题目来源于试卷: VectorsVectors,类别为 IB数学

[问答题]
Two planes have equatis(g8w/t l lkz67j/a cueh5s lu yc(+ub(w.4v nons

$\Pi_{1}$: 2 x-2 y+z=1 $\text { and } \Pi_{2}: x-4 y-z=5 $.

1. Find the cosine of the angle between the two planes, giving your answer in the form $\frac{\sqrt{p}}{q}$ where p, q$\in \mathbb{Z}^{+} $.

Let L be the line of intersection of the two planes.
2. 1. Show that L has direction $ 2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$.
2. Show that the point A(4,1,-5) lies on both planes.
3. Write down the vector equation of L .

B is the point on $ \Pi_{1}$ with coordinates (a, b, 3) .
3. Given that the vector $\overrightarrow{\mathrm{AB}}$ is perpendicular to L , find the value of a and the value of b .
4. Show that $ \mathrm{AB}=12$ .

The point C lies on L and $\mathrm{AB} \mathrm{B}=60^{\circ}$ .
5. Find the coordinates of the two possible positions of C .




参考答案:






本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:11 , Processed in 0.048161 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表