题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Calculus (id: 8c3c9e197)

[复制链接]
admin 发表于 2024-7-27 23:10:39 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Calculus,类别为 IB数学

[填空题]
Jack makes an open con*h8 8auf.kmvc tainer ins5;9b pqpdwm6*8kyta the shape of a cuboid with square base, as shown in the 8t5y;paqpw6bs9* kmd following diagram.


The container has base length $x \mathrm{~m}$ and height $y \mathrm{~m}$ . The volume is $32 \mathrm{~m}^{3}$ .
Let A(x) be the outside surface area of the container.
1. Show that $A(x)=\frac{128}{x}+x^{2}$.   
2. Find $A^{\prime}(x)$ .   
3. Given that the outside surface area is a minimum, find the base length of the container.   
4. Jack coats the outside of the container with waterproof resin. A can of resin covers a surface area of $5 \mathrm{~m}^{2}$ and costs $ 15 . Find the total cost of the cans needed to coat the container.   




参考答案:
空格1: 128/x+x^2空格2: 2*x-128/x^2空格3: 4空格4: 150


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2025-4-4 06:23 , Processed in 0.060499 second(s), 30 queries , Redis On.

搜索
快速回复 返回顶部 返回列表