题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Calculus (id: 0a4b16009)

[复制链接]
admin 发表于 2024-7-30 00:41:18 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Calculus,类别为 IB数学

[填空题]
Let $f(x)=16-x^{2}$ , for $x \in \mathbb{R}$ .
1. Find the x -intercepts of the graph of f . x = $\pm $   

The following diagram shows part of the graph of f .

Rectangle ABCD is drawn with $\mathrm{A} \& \mathrm{~B}$ on the x -axis and $\mathrm{C} \& \mathrm{D} $ on the graph of f . Let $\mathrm{OA}=a$ .
2. Show that the area of ABCD is $32 a-2 $a^{3}$$ .    = 0
3. Hence find the value of a>0 such that the area of ABCD is a maximum.   

Let $g(x)=(x-4)^{2}+k$ , for $x \in \mathbb{R}$ , where k is a constant.
4. Show that when the graphs of f and g intersect, 2 x^{2}-8 x+k=0 .   
5. Given that the graphs of f and g intersect only once, find the value of k .   




参考答案:
空格1: 4±2%空格2: 32*a-2*a^3空格3: 2.31±2%空格4: 2*x^2-8*x+k空格5: 8±2%


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:05 , Processed in 0.054845 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表