题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Calculus (id: bfe790c13)

[复制链接]
admin 发表于 2024-7-30 21:32:35 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Calculus,类别为 IB数学

[问答题]
Let $f(x)=\frac{1}{3} x^{3}+2 x^{2}-5 x+10$ .
1. Find $f^{\prime}(x)$ .

The graph of f has horizontal tangents at the points where x=a and x=b, a$\lt$b .
2. Find the value of a and the value of b .
3. a. Sketch the graph of $y=f^{\prime}(x)$ .
b. Hence explain why the graph of f has a local maximum point at x=a .
4. a. Find $f^{\prime \prime}(b)$ .
b. Hence, use your answer to part (d) (i) to show that the graph of f has a local minimum point at x=b .

The tangent to the graph of f at x=a and the normal to the graph of f at x=b intersect at the point (p, q) .
5. Find the value of p and the value of q .




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 02:40 , Processed in 0.051325 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表