题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Calculus (id: 8e3309ee6)

[复制链接]
admin 发表于 2024-7-30 22:30:39 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Calculus,类别为 IB数学

[问答题]
Consider the curves h44(ggq.g */gyv ai yt1eqmi;a-j1 t0-*wh8 nhqa gr yy3,dse $C_{1}$ and $C_{2}$ defined as follows

$\begin{array}{l}
C_{1}: \quad 3 y^{2}+2 x^{2}=5, y>0 \\
C_{2}: \quad y^{2}-5 x^{3}=0, y>0
\end{array}$

1. Using implicit differentiation, or otherwise, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for each curve in terms of x and y .

Let $\mathrm{P}(a, b)$ be the unique point where the curves $C_{1}$ and $C_{2}$ intersect.
2. Show that the tangent to $C_{1}$ at P is perpendicular to the tangent to $C_{2}$ at P .




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:34 , Processed in 0.056912 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表