题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Calculus (id: ce7e5e686)

[复制链接]
admin 发表于 2024-7-30 22:34:18 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Calculus,类别为 IB数学

[填空题]
$\text { Consider the function } f(x)=\sqrt{\frac{16-4 x^{2}}{7}} \text {, for }-2 \leq x \leq 2 \text {. In the following diagram, the shaded region is enclosed by the graph of } f \text { and the } x \text {-axis. }$



A rainwater collection tank can be modelled by revolving this region by $360^{\circ}$ about the x -axis.
1. Find the volume of the tank.   

Rainwater in the tank is used for drinking, cooking, bathing and other needs during the week.
The volume of rainwater in the tank is given by the function g(t) , for 0 $\leq $t \$leq 7$ , where t is measured in days and g(t) is measured in $\mathrm{m}^{3}$ . The rate of change of the volume of rainwater in the tank is given by $g^{\prime}(t)=1.5-4 \cos \left(0.12 t^{2}\right)$ .
2. The volume of rainwater in the tank is increasing only when aa. Find the value of a and the value of b . a =    b =   
b. During the interval $a\lt t \ltb$ , the volume of rainwater in the tank increases by $d \mathrm{~m}^{3}$ . Find the value of d .   

When t=0 , the volume of rainwater in the tank is 8.2 $\mathrm{~m}^{3}$ . It is known that the tank is never completely full of rainwater during the 7 day period.
3. Find the minimum volume of empty space in the tank during the 7 day period.   




参考答案:
空格1: 19.1±2%空格2: 3.14±2%空格3: 6.52±2%空格4: 11.1±2%空格5: 13.1±2%


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:08 , Processed in 0.058074 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表