题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Calculus (id: e8c411b6e)

[复制链接]
admin 发表于 2024-7-30 22:35:56 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Calculus,类别为 IB数学

[问答题]
Let the Maclaurin seri5s*oi,x br30vq qc:bh e j8b .e61k,zxzlegfc 8s for $\cot x$ be

$\cot x=\frac{a_{1}}{x}+a_{2} x+a_{3} x^{3}+\cdots$

where $a_{1}, a_{2}$ and $ a_{3}$ are non zero constants.
1. Find the series for $\csc ^{2}$ x , in terms of $a_{1}, a_{2}$ and $a_{3}$ , up to and including the $x^{2}$ term
a. by differentiating the above series for $\cot x$ ;
b. by using the relationship $\csc ^{2} x=1+\cot ^{2} x$ .
2. Hence, by comparing your two series, determine the values of $a_{1}, a_{2}$ and $ a_{3}$ .




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:17 , Processed in 0.058807 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表