本题目来源于试卷: Differential Calculus,类别为 IB数学
[问答题]
Consider the functio+pby g(l1fo5( trrkl9h.hx55h erz c, dp:vk l;; 2vba+c, mygn $ g(x)=a x^{3}+b x^{2}+c x+d$ , where x$ \in \mathbb{R} $ and a, b, c, d $\in \mathbb{R}$ .
1. 1. Write down an expression for $ g^{\prime}(x)$ .
2. Hence, given that $g^{-1}$ does not exist, show that $ b^{2}-3$ a c$\lt $0 .
Consider the function $f(x)=\frac{x^{3}}{2}+3 x^{2}+6 x+\frac{9}{2}$
2. 1. Show that $f^{-1}$ exists.
2. f(x) can be written in the form p(x+2)^{3}+q , where p, q$ \in \mathbb{R}$ . Find the value of p and the value of q .
3. Hence, find $ f^{-1}(x)$ .
The graph of f(x) may be obtained by transforming the graph of $y=x^{3}$ using a sequence of three transformations.
3. State each of the transformations in the order in which they are applied.
4. Sketch the graphs of y=f(x) and $y=f^{-1}(x)$ on the same set of axes, indicating the points where each graph crosses the coordinate axes.
参考答案:
本题详细解析:
暂无
|