题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Calculus (id: dc19fd521)

[复制链接]
admin 发表于 2024-7-30 23:22:06 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Calculus,类别为 IB数学

[问答题]
Let $f(x)=(x-1) e^{\frac{t}{3}}$, for $x \in \mathbb{R}$
1. Find $f^{\prime}(x) $.
2. Prove by induction that $ \frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}=\left(\frac{3 n+x-1}{3^{n}}\right) e^{\frac{x}{3}} $ for all $n \in \mathbb{Z}^{+}$ .
3. Find the coordinates of any local maximum and minimum points on the graph of y=f(x) . Justify whether such point is a maximum or a minimum.
4. Find the coordinates of any points of inflexion on the graph of y=f(x) . Justify whether such point is a point of inflexion.
5. Hence sketch the graph of y=f(x) , indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.




参考答案:






本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:51 , Processed in 0.056496 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表