题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Integral Calculus (id: 481e4f9df)

[复制链接]
admin 发表于 2024-7-31 21:41:24 | 显示全部楼层 |阅读模式
本题目来源于试卷: Integral Calculus,类别为 IB数学

[填空题]
A particle moves in a straight line and its velocitnbd i4osu.w1( -e kr voa v3l;5to1:ct;mr-isy, $ v \mathrm{~ms}^{-1}$ , at time t seconds, is given by $ v(t)=\left(t^{2}-2\right)^{2} $, for $ 0 \leq t \leq 2$ .
1. Find the initial velocity of the particle.   
2. Find the value of t for which the particle is at rest.   
3. Find the total distance travelled by the particle in the first 2 seconds.   
4. Show that the acceleration of the particle is given by $a(t)=4 t^{3}-8 t $.   
5. Find the values of t for which the velocity is positive and the acceleration is negative. a $\lt$t$lt$ b a =    b =   




参考答案:
空格1: 4±2%空格2: 1.41±2%空格3: 3.73±2%空格4: 4*t^3-8*t空格5: 0±2%空格6: 1.41±2%


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:14 , Processed in 0.060468 second(s), 29 queries , Redis On.

搜索
快速回复 返回顶部 返回列表