题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Integral Calculus (id: 8944a7e96)

[复制链接]
admin 发表于 2024-7-31 22:49:33 | 显示全部楼层 |阅读模式
本题目来源于试卷: Integral Calculus,类别为 IB数学

[问答题]
A particle P moves along a st*-sa exbx1hyh-e(p;z vg t/bgj46l i6raight line so that its veloci)e7 oh6 fm z(rj*- gwcdh3*xlpty, v, $\mathrm{~ms}^{-1}$ , after t seconds, is given by v=2 $\sin t-\cos 5 t+0.1$ , for $ 0 \leq t \leq 4 $. The initial displacement of P from a fixed point O is 2 metres.



1. Find the displacement of P from O after 4 seconds.
2. Find the second time for t , when the particle is at rest.
3. Write down the number of times P changes direction.
4. Write down the number of times P is neither accelerating or decelerating.
5. Find the maximum distance of P from O during the time $0 \leq t \leq 4$ and justify your answer.




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:28 , Processed in 0.048977 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表