题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Integral Calculus (id: fba2cf643)

[复制链接]
admin 发表于 2024-8-2 02:46:36 | 显示全部楼层 |阅读模式
本题目来源于试卷: Integral Calculus,类别为 IB数学

[问答题]
1. Show that 3 $\log _{a^{3}} x=\log _{a}$ x where a, x $\in \mathbb{R}^{+} $.

It is given that $ \log _{2} y+\log _{8} 4 x^{2}+\log _{8} 2 x=0$ .
2. Express y in terms of x . Give your answer in the form $y=b x^{c}$ where b, c are constants.

The region R , is bounded by the graph of the function found in part (b), the x -axis, and the lines x=1 and x=k where k>1 . The area of R is $\frac{3}{2} $.
3. Find the value of k .




参考答案:



本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:09 , Processed in 0.056113 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表