本题目来源于试卷: Integral Calculus,类别为 IB数学
[问答题]
1. Show that 3 $\log _{a^{3}} x=\log _{a}$ x where a, x $\in \mathbb{R}^{+} $.
It is given that $ \log _{2} y+\log _{8} 4 x^{2}+\log _{8} 2 x=0$ .
2. Express y in terms of x . Give your answer in the form $y=b x^{c}$ where b, c are constants.
The region R , is bounded by the graph of the function found in part (b), the x -axis, and the lines x=1 and x=k where k>1 . The area of R is $\frac{3}{2} $.
3. Find the value of k .
参考答案:
本题详细解析:
暂无
|