题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Integral Calculus (id: 5d549e925)

[复制链接]
admin 发表于 2024-8-2 03:08:57 | 显示全部楼层 |阅读模式
本题目来源于试卷: Integral Calculus,类别为 IB数学

[问答题]
$\text { The following diagram shows the curve } \frac{x^{2}}{400}+\frac{(y+5)^{2}}{225}=1 \text {, where } 0 \leq y \leq h \text {. }$




The curve from point C to point P is rotated $360^{\circ}$ about the y -axis to form a lamp shade. The rectangle ABCD , of height $(10-h) \mathrm{cm}$ , is rotated $360^{\circ}$ about the y -axis to form a solid ceiling fixture.
The lamp shade is assumed to have a negligible thickness. Given that the interior volume of the lamp shade is to be 6000 $\mathrm{~cm}^{3}$ , determine the height of the ceiling fixture, length A D in the diagram.




参考答案:






本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:03 , Processed in 0.061832 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表