题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Integral Calculus (id: 171c6f4da)

[复制链接]
admin 发表于 2024-8-2 03:17:06 | 显示全部楼层 |阅读模式
本题目来源于试卷: Integral Calculus,类别为 IB数学

[问答题]
Let $ f(x)=\frac{\ln \left(8 x^{3}\right)}{k x}$ where x>0, $k \in \mathbb{R}^{+}$.
1. Show that $f^{\prime}(x)=\frac{3-\ln \left(8 x^{3}\right)}{k x^{2}}$ .

The graph of f has exactly one maximum point A .
2. Find the x -coordinate of A .

The second derivative of f is given by $ f^{\prime \prime}(x)=\frac{2 \ln \left(8 x^{3}\right)-9}{k x^{3}}$ . The graph of f has exactly one point of inflexion B .
3. Show that the x -coordinate of B is $ \frac{e^{3 / 2}}{2}$ .

The region R is enclosed by the graph of f , the x -axis, and the vertical lines through the maximum point A and the point of inflexion B .

$\text { 4. Given that the area of } R \text { is } 5 \text {, find the value of } k \text {. }$




参考答案:





本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:08 , Processed in 0.060970 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表