题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Integral Calculus (id: f8e5affd8)

[复制链接]
admin 发表于 2024-8-2 03:26:49 | 显示全部楼层 |阅读模式
本题目来源于试卷: Integral Calculus,类别为 IB数学

[问答题]
Consider the function xf9*o 6g mu kr5fkiw3 htk+e)1fancf ,d --4y ocsd2;) 0zljy r*l(uqxyv q7+c $f(x)=\frac{\sqrt{x}}{2 \cos x}$, $\frac{\pi}{2}\lt x\lt \frac{3 \pi}{2}$ .
1. 1. Show that the x -coordinate of the maximum point on the curve y=f(x) satisfies the equation $1+2 x \tan x=0$ .
2. Determine the values of x for which f(x) is an increasing function.
2. Sketch the graph of y=f(x) , showing clearly the maximum point and any asymptotic behaviour.
3. Find the coordinates of the point on the curve y=f(x) where the normal to the curve is perpendicular to the line y=x . Give your answers correct to two decimal places.

Consider the region bounded by the curve y=f(x) , the x -axis and the lines

$x=\frac{3 \pi}{4}, x=\frac{4 \pi}{3} \text {. }$

4. The region is now rotated through $ 2 \pi $ radians about the x -axis. Find the volume of revolution, giving your answer correct to two decimal places.




参考答案:









本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2025-4-4 07:15 , Processed in 0.053499 second(s), 30 queries , Redis On.

搜索
快速回复 返回顶部 返回列表