题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Integral Calculus (id: d77e331bc)

[复制链接]
admin 发表于 2024-8-2 03:33:07 | 显示全部楼层 |阅读模式
本题目来源于试卷: Integral Calculus,类别为 IB数学

[问答题]
Consider the functionr7ja 8;zr010xvypp3 a. qon dkxw3,6wh0hd7tp ( :h dz.s fm;pevfh-b $f(x)=\frac{a e^{-x}}{b-a e^{-x}}$ where $a\lt 0, b\lt 0$ .
1. Show that $f^{\prime}(x)=\frac{-a b e^{-x}}{\left(b-a e^{-x}\right)^{2}}$ .
2. Explain why $f^{\prime \prime}(x)$ is never zero.
3. Find the equation of:
a. the vertical asymptote of f ;
b. the horizontal asymptote of f .
4. Draw a sign diagram for $f^{\prime}(x)$ .
5. If a=3 and b=1 ,
a. sketch the graph of f labelling all asymptotes;
b. find the area of the region enclosed by f , the x and y axes and the line $x=\ln 2$ .




参考答案:












本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:47 , Processed in 0.033951 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表