题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Integral Calculus (id: 378cc790f)

[复制链接]
admin 发表于 2024-8-2 03:37:15 | 显示全部楼层 |阅读模式
本题目来源于试卷: Integral Calculus,类别为 IB数学

[问答题]
$\text { The following diagram shows the graph of } y=x(\ln x)^{2}, x>0 \text {. }$



1. Given that the curve passes through the point (p, 0) , state the value of p .

The region R is enclosed by the curve ( $p \leq x \leq e $ ), the x -axis and the line x=e .
2. Integrate by parts twice to find the area of the region R .

Let $I_{n}=\int_{1}^{e} x^{2}(\ln x)^{n} \mathrm{~d} x, n \in \mathbb{N}$
3. a. Find the value of I_{0} .
b. Show that $I_{n}=\frac{1}{3}\left(e^{3}-n I_{n-1}\right)$.
c. Hence find the values of $ I_{1}$,$ I_{2}$ and $I_{3}$ .

The region R is rotated through $2 \pi$ radians about the x -axis.
4. Find the volume of the solid formed.




参考答案:







本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:49 , Processed in 0.060115 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表