本题目来源于试卷: Maclaurin Series,类别为 IB数学
[问答题]
The function f is defined by wchgyq u*a 7 lib3 ,o7w,wz5 lk2pwy*(+a1m cq ppc)p6$ f(x)=e^{x} \cos x, x \in \mathbb{R} $.
1. By finding a suitable number of derivatives of f , determine the Maclaurin series for f(x) as far as the term $x^{4} $.
2. Hence, or otherwise, determine the exact value of $\lim _{x \rightarrow 0} \frac{e^{x} \cos x-x-1}{x^{3}} $.
参考答案:
本题详细解析:
暂无
|