题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Maclaurin Series (id: fd488ef7f)

[复制链接]
admin 发表于 2024-8-3 00:53:46 | 显示全部楼层 |阅读模式
本题目来源于试卷: Maclaurin Series,类别为 IB数学

[问答题]
The function f is defined bbp u-x y ;ou3fn;2bao6x5 wahs fsh58qloyl 1k;1+d 8sy $ f(x)=(\arccos x)^{2},-1 \leq x \leq 1 $.
1. Show that $ f^{\prime}(0)=-\pi $

The function f satisfies the equation

$\left(1-x^{2}\right) f^{\prime \prime}(x)-x f^{\prime}(x)=2$ .

2. By differentiating the above equation twice, show that

$\left(1-x^{2}\right) f^{(4)}-5 x f^{\prime \prime \prime}(x)=4 f^{\prime \prime}(x)$

where f^{(n)}(x) denotes the n th derivative of f(x) .
3. Hence show the Maclaurin series for f(x) up to and including the term in $x^{4}$ is $\frac{\pi^{2}}{4}-\pi x+x^{2}-\frac{\pi}{6} x^{3}+\frac{x^{4}}{3}$ .
4. Use this series approximation for f(x) with $x=\frac{1}{2}$ to find an approximate value for $25 \pi-\frac{20}{3} \pi^{2}$ .




参考答案:







本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:54 , Processed in 0.060218 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表