题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Maclaurin Series (id: ef0e6c8b0)

[复制链接]
admin 发表于 2024-8-3 00:54:54 | 显示全部楼层 |阅读模式
本题目来源于试卷: Maclaurin Series,类别为 IB数学

[问答题]
The function f is den nap-at, f6p(fine6mqvsa2+ h f)ed by $f(x)=e^{\arctan x}$ .
1. Find the first two derivatives of f(x) and hence find the Maclaurin series for f(x) up to and including the $x^{2} $ term.
2. Show that the coefficient of $x^{3}$ in the Maclaurin series for f(x) is $-\frac{1}{6}$ .
3. Using the Maclaurin series for $\sin x $ and $\ln (2 x+1) $, find the Maclaurin series for $\sin (\ln (2 x+1)) $ up to and including the $ x^{3}$ term.
4. Hence, or otherwise, find $\lim _{x \rightarrow 0} \frac{f(x)-1}{\sin (\ln (2 x+1))} $.




参考答案:






本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:09 , Processed in 0.058254 second(s), 29 queries , Redis On.

搜索
快速回复 返回顶部 返回列表