题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Equations (id: 9146f9c68)

[复制链接]
admin 发表于 2024-8-3 01:07:28 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Equations,类别为 IB数学

[填空题]
There is a rumour spreading about tk.iwfgnk+lyu8/.u 0e 0jks wejahqpe2y8a-7ra .*+yhe questions that will appear in an upcoming chemistry exam in a class with a large number of students. Let x be the proportion of students who have heard the rumor an kq ra0a.wje+s ay* ehyj82p7-d let t be the time in hours, after 10.00 a.m.

The situation can be modelled by the differential equation $ \frac{\mathrm{d} x}{\mathrm{~d} t}=k x(1-x)$ where k is a constant.
1. Use partial fractions to solve this differential equation and hence show that $\frac{x}{1-x}=A e^{k t} $, where A is a constant   
2. At 10.00 $\mathrm{a}$ .$ \mathrm{m}$ . one tenth of the students know about the rumour. Find the value of A   
3. At 12.00 p.m., the proportion of students who knew about the rumor is 0.55 . Find the value of k ≈   
4. Hence, find the proportion of students who knew about the rumour at 1.00 p.m.≈   




参考答案:
空格1: A*e^(k*)空格2: 1/9±2%空格3: 1.2±2%空格4: 0.803±2%


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:16 , Processed in 0.057620 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表