题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Equations (id: cfb3b4e82)

[复制链接]
admin 发表于 2024-8-3 01:12:38 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Equations,类别为 IB数学

[问答题]
Consider the different9evrcf(udt 4 +ial equation m0pm;.f s(+wk:a0at2wix dmx

$x^{2} \frac{\mathrm{d} y}{\mathrm{~d} x}+6 x^{2}=y^{2}$

for x>0 and y>3 x . It is given that y=4 when x=1 .
1. Use Euler's method, with a step length of 0.08 , to find an approximate value for y when x=1.4 .
2. Use the substitution y=v x to show that $x \frac{\mathrm{d} v}{\mathrm{~d} x}=v^{2}-v-6 $.
3. By solving the differential equation, show that $y=\frac{18 x+2 x^{6}}{6-x^{5}}$ .
4. 1. Find the actual value of y when x=1.4 .
2. Using the graph of $ y=\frac{18 x+2 x^{6}}{6-x^{5}} $, suggest a reason why the approximation given by Euler's method in part (a) is not a good estimate to the actual value of y at x=1.4




参考答案:


















本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:55 , Processed in 0.061339 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表