题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Equations (id: e00476856)

[复制链接]
admin 发表于 2024-8-3 01:13:52 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Equations,类别为 IB数学

[问答题]
Consider the differential 9cumi4r5 ce+k/ky;uk95pibs x+y6 jffhu8/sy aen*e *(k y1z equation $x \frac{\mathrm{d} y}{\mathrm{~d} x}+y=x^{p+1} $ where $x \in \mathbb{R}$, $x \neq 0 $ and p is a positive integer, p>0 .
1. Solve the differential equation given that y=1 when x=1 . Give your answer in the form y=f(x) .
2. 1. Show that the x -coordinate(s) of the points on the curve y=f(x) where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 $ satisfy the equation $x^{p+2}=1$ .
2. Deduce the set of values for p such that there are two points on the curve y=f(x) where $ \frac{\mathrm{d} y}{\mathrm{~d} x}=0 $. Give a reason for your answer.




参考答案:




本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:09 , Processed in 0.052663 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表