| 
        本题目来源于试卷:  Differential Equations ,类别为 IB数学 
[问答题]1. Consider the differential eq *qy :h2bmob  pwlcf gxrk0i6;y9f.4g*uati; .m l)xpcamyob .vg,g3l: -(mps w1ubon
 
 $\frac{\mathrm{d} y}{\mathrm{~d} x}=f\left(\frac{y}{x}\right), \quad x\lt 0$ .
 
 
 Use the substitution$  v=\frac{y}{x}$  to show that the general solution of this differential equation is
 
 $\int \frac{\mathrm{d} v}{f(v)-v}=\ln x+C$
 
 2. Hence, or otherwise, solve the differential equation
 
 $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x^{2}+5 x y+y^{2}}{x^{2}}, \quad x\lt 0$,
 
 given that  y=2  when  x=1 . Give your answer in the form  y=g(x) .
 
 
 
参考答案:   
 本题详细解析:
 
 暂无 |