本题目来源于试卷: Differential Equations,类别为 IB数学
[问答题]
The curves y=f(x) and y=g(x) both p+-nica )b:.lfv:n, nom5toh pass through the poe 6vzpv8; l0mz57y82 ujos dwjint (1,0) and are defined by the differentmv8zu jdpl;w 85ojyv7z62e0 sial equations $ \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-y^{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 y-\frac{x}{2} $ respectively.
1. Show that the tangent to the curve y=f(x) at the point (1,0) is normal to the curve y=g(x) at the point (1,0) .
2. Find g(x) .
3. Use Euler's method with steps of 0.2 to estimate f(2) to 5 decimal places.
参考答案:
本题详细解析:
暂无
|